
Chapter 1

SOFTWARE SUPPORT

“Ratfor " (RATional FORtran) is a dialect of Fortran that is more concise than raw Fortran.
Our present Ratfor “compiler,”ratfor90 , is a simple word-processing program (written1 in
Perl and freely distributed) that inputs an attractive Fortran-like dialect and outputs Fortran90.
Mainly, the word-processor produces Fortran statements likeend do , end if , end pro-

gram andend module , from the Ratfor “}”. Ratfor source is about 25-30% smaller than the
equivalent Fortran, so it is equivalently more readable.

Bare-bonesFortran is our most universal computer language for computational physics.
For general programming, however, it has been surpassed byC. Ratfor is Fortran with C-like
syntax. Ratfor was invented by the people2 who invented C. After inventing C, they realized
that they had made a mistake (too many semicolons) and they fixed it in Ratfor, although it
was too late for C. Otherwise, Ratfor uses C-like syntax, the syntax that is also found in the
popular languagesC++ andJava.

At SEP we supplemented Ratfor77 by preprocessors to give Fortran77 the ability to allo-
cate memory on the fly. These abilities are built into Fortran90 and are seamlessly included
in Ratfor90. To take advantage of Fortran90’s new features while maintaining the concise
coding style provided by Ratfor, we had to write a new Ratfor preprocessor, Ratfor90, which
produces Fortran90 rather than Fortran77 code.

You should be able to read Ratfor if you already know Fortran or any similar computer
language. Writing Ratfor is easy if you already know Fortran because written Fortran is valid
Ratfor. You can mix Ratfor and Fortran. The Ratfor processor is not a compiler but a sim-
ple word-processing program which passes Fortran (which it does not understand) through
unchanged. The Ratfor processor converts the Ratfor dialect to Fortran. To maximize the
amount of Ratfor, you will need to know its rules. Here they are:

Statements on a line may be separated by “;”. Statements may be grouped together with
braces { }. Do loops do not require statement numbers because { } defines the range. Given
that if() is true, the statements in the following { } are done.else{ } does what you

1The Ratfor90 preprocessor was written by my colleague, Bob Clapp.
2Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley.

1

2 CHAPTER 1. SOFTWARE SUPPORT

expect. We maynot contractelse if to elseif . We may omit the braces { } where they
contain only one statement.break (equivalent to the Fortran90exit) causes premature termi-
nation of the enclosing { }.while() { } repeats the statements in { } while the condition (
) is true. Ratfor recognizesrepeat { ... } until() as a loop that tests at the bottom.
next causes skipping to the end of any loop and a retrial of the test condition.next (equiva-
lent to the Fortran90cycle statement) is rarely used, and the Ratfor90 coder may write either
next or cycle . Here we encounter an inconsistency between Fortran and C-language. Where
Ratfor usesnext , the C-language usescontinue (which in Ratfor and Fortran is merely a
place holder for labels). The Fortran relational operators.gt. , .ge. , .ne. , etc. may be
written >, >=, !=, etc. The logical operators.and. and .or. may be written && and||.
Anything from a # to the end of the line is a comment. A line may be continued in Ratfor by
ending it with the underscore charactor “_” (like Fortran90’s &).

Indentation in Ratfor is used for readability. It is not part of the Ratfor language. Choose
your own style. I have overcondensed. There are twopitfall s associated with indentation.
The beginner’s pitfall is to assume that ado loop ends where the indentation ends. The loop
actually ends after the first statement. A larger scope for thedo loop is made by enclosing
multiple statements in braces. The other pitfall arises in any construction likeif() ...

if() ... else . Theelse goes with the lastif() regardless of indentation. If you want
theelse with the earlierif() , you must use braces likeif() { if() ... } else
Ratfor also recognizes the looping statement used in C, C++, and Java. It isfor(initialize;

condition; reinitialize) { } .

1.0.1 Changes and backward compatibility

We were forced to make one change to Ratfor90 because of new things in Fortran90. Ratfor77
allows & and| for the logical operators && and||. While attractive, it is not part of the C
family of languages and we had to drop it because Fortran90 adopts & for line continuation.

Because we are not compiler writers, we dropped a rarely used feature of Ratfor77 that
was not easy for us to implement and is ugly anyway: Ratfor77 recognizesbreak 2 which
escapes from {{ }}.

Changing all the code that generated illustrations for four textbooks (of various ages) also
turned up a few more issues: Fortran90 uses the wordsscale andmatmul as intrinsics. Old
Fortran77 programs using those words as variable names must be changed. Ratfor77 unwisely
allowed variables of intrinsic (undeclared) types. We no longer allow this. Ratfor90 forces
implicit none .

New features in Ratfor90 are bracketed type, subroutine, function, and module procedures.
In some ways this a further step towards the C, C++, Java model. It makes complicated
modules, subroutines inside subroutines, and other advanced features of Fortran90 easier to
interpret. Ratfor90 has better error messages than Ratfor77. Besides the use of stderr, a new
file (ratfor_problem) marks the difficulty.

3

1.0.2 Examples

Below are simple Ratfor subroutines for erasing an array (zero()); (null()); for copying
one array to another (copy()); for the signum functionsgn(x) = x/|x| (signum()); and
(tcaf), a program using fortran90 modules and overloading to transient convolution.

1.0.3 Memory allocation in subroutines

For backward compatibility we allow the “temporary” memory allocation introduced by our
Ratfor77 processor for example:

temporary real*4 data(n1,n2,n3), convolution(j+k-1)

These declarations must follow other declarations and precede the executable statements. Au-
tomatic arrays are supported in Fortran90. To allow full code compatibility,Ratfor90 simply
translates this statement to

real*4 data(n1,n2,n3), convolution(j+k-1) .

1.0.4 The main program environment

Ratfor90 includes some traditional SEP local-memory-allocation and data-base-I/O state-
ments that are described below. It calls an essential seplib initialization routineinitpar() ,
organizes the self-doc, and simplifies data-cube input. The basic syntax for memory allocation
is allocate: real x(n1,n2) . Ratfor90 translates this syntax into a call to dynamically
allocate aallocatable array. See the on-line self-documentation or the manual pages for
full details. Following is a complete Ratfor program for a simple task:

<in.H Scale scaleval=1. > out.H
#
Copy input to output and scale by scaleval
keyword generic scale
#%
integer n1, n2, n3, esize
from history: integer n1, n2, n3, esize
if (esize !=4) call erexit(’esize != 4’)
allocate: real x(n1,n2)
subroutine scaleit(n1,n2, x)
integer i1,i2, n1,n2
real x(n1,n2), scaleval
from par: real scaleval=1.
call hclose() # no more parameter handling.
call sreed(’in’, x, 4*n1*n2)
do i1=1,n1

do i2=1,n2
x(i1,i2) = x(i1,i2) * scaleval

call srite(’out’, x, 4*n1*n2)
return; end

4 CHAPTER 1. SOFTWARE SUPPORT

1.1 SERGEY’S MAIN PROGRAM DOCS

Many of the illustrations in this book are made with main programs that can be reused (in the
SEP environment) for other applications. Here is a summary of their documentation.

1.1.1 Autocorr - compute autocorrelation for helix filters

Autocorr < filt.H > autocorr.H

Reads a helix filter. Outputs the positive lag of its autocorrelation (no space wasted).

from/to history integer n1 filter size
integer array lag comma-separated list of filter lags
real a0=1 zero-lag coefficient

Modules: helix.r90, autocorr.r90

1.1.2 Bin2 - nearest neighbor binning in 2-D

Bin2 < triplets.H > map.H

Bins (x,y,z) data triplets. Normalizes by bin fold.

from history integer n1, n2 n1is number of triplets,n2must be 3
from par integer n1, n2– map size

real o1, o2, d1, d2–
map dimensions

Modules: bin2.lop

1.1.3 Conv - convolve two helix filters

Conv < filt1.H other=filt2.H > conv.H

Outputs the convolution of filt1 and filt2.

from/to history integer n1 filter size
integer array lag comma-separated list of filter lags

Modules: helix.r90, conv.r90

1.1.4 Decon - Deconvolution (N-dimensional)

Decon < data.H filt= predictive=0 > decon.H

Deconvolution: predictive, Lomoplan, steep dip. Uses the helix and patching technology.

1.1. SERGEY’S MAIN PROGRAM DOCS 5

from history integer array n n1, n2, n3, etc
from par filename filt helix-type local PEF

logical predictive=0 predictive deconvolution
integer rect1(optional) smoothing on the first axis

from aux (filt) integer dim number of dimensions
integer array w patch size
integer array k number of windows

Modules: tent.r90, patching.r90, loconvol.r90, helix.r90 triangle.r90
See also:Lopef , Helicon

1.1.5 Devector - create one output filter from two input filters

Devector < filt1.H other=filt2.H > filt.H

Uses Wilson’s factorization. filt = sqrt (filt1**2 + filt2**2)

from history and
from aux (other)

integer n1 number of filter coefficients

integer arra n2,n3,... number of filters
integer array lag helix filter lags

from par integer niter=20 number of WIlson’s iterations
integer n1 number of output filter coefficients
integer array lag output lags

Modules: wilson.r90, autocorr.r90, compress.r90

1.1.6 Helderiv - Helix derivative filter in 2-D

Helderiv < in.H helix=1 na=16 > out.H

Factors the laplacian operator. Applies helix derivative. Loops over n3

from history integer n1, n2
from par logical helix=1 if 0, apply the gradient filter on the 1st axis

integer na=16 filter size (half the number of nonzero coeffi-
cients)

real eps=0.001 zero frequency shift on the laplacian

Modules: helicon.lop, helderiv.r90

1.1.7 Helicon - Helix convolution and deconvolution (N-dimensional!)

Helicon < in.H filt= adj=0 div=0 > out.H

Applies helix convolution (polynomial multiplication) or deconvolution (polynomial division). One is the
exact inverse of the other. Watch for helical boundary conditions.

from history integer array n readsn1, n2, n3, ...
from par filename filt helix filter file

integer adj=0 apply adjoint (backward) filtering
integer div=0 apply inverse recursive filtering (polynomial

division)
from aux (filt) integer array h helix grid (can beh1, h2, ...)

integer array lag=1,...,n1 comma separated list of filter lags
real a0=1 zero-lag filter coefficient

6 CHAPTER 1. SOFTWARE SUPPORT

Modules: helicon.lop, polydiv.lop, regrid.r90, helix.r90

1.1.8 Helocut - Helix Lowcut filter in 2-D

Helocut < in.H helix=1 na=16 eps=0.1 > out.H

Applies helix convolution with a low-cut factor, based on factoring the laplacian filter. Also loops over n3.

from history integer n1, n2
from par logical helix=1 if 0, apply the gradient filter on the 1st axis

real eps sets the lowcut frequency
integer na=16 filter size (half the number of nonzero coeffi-

cients)

Modules: helicon.lop, helocut.r90

1.1.9 Hole - Punch ellipsoidal hole in 2-D data

Hole < data.H > hole.H

Hole’s dimensions and orientation are currently fixed

from history integer n1, n2

See also:Make

1.1.10 Igrad - take gradient on the first axis

Igrad < map.H > grad.H

Works on 2-D data, gradient is (1,-1) filter

from history integer n1, n2

Modules: igrad1.lop

1.1.11 LPad - Pad and interleave traces

LPad < small.H jump=2 mask= > large.H

Each initial trace is followed byjumpzero traces, the same for planes.

from history integer n1, n2, n3
from par integer jump=2 how much to expand the axes

filename mask selector for known traces (same size as out-
put)

to history integer n2=n2*jump
(if n2 > 1),
n3=n3*jump (if
n3> 1)

See also:LPef

1.1. SERGEY’S MAIN PROGRAM DOCS 7

1.1.12 LPef - Find PEF on aliased traces

LPef < in.H jump=2 a= center=1 gap=0 > out.H

Finds a prediction-error filter, assuming missing traces

from history integer array n readsn1, n2, n3, etc.
from par integer jump=2 how much to expand the axes

integer array a= PEF size
integer array center=1 PEF centering
integer array gap=0 PEF gapping

Modules: lace.r90, helix.r90, print.r90, compress.r90
See also:Pef

1.1.13 Lapfill2 - fill missing data by minimizing the Laplacian

Lapfill2 < map.H > filled.H

Works on 2-D data only.

from history integer n1, n2
from par integer niter=200 number of CG iterations

Modules: lapfill.r90
See also:Miss , MSMiss

1.1.14 LoLPef - Find PEF on aliased traces (with patching)

LoLPef < in.H jump=2 a= center=1 gap=0 > out.H

Finds a prediction-error filter, assuming missing traces

from history integer array n readsn1, n2, n3, etc.
from par integer array w=20,20,6 patch size

integer array k (optional) number of windows
integer jump=2 how much to expand the axes
integer array a= PEF size
integer array center=1 PEF centering
integer array gap=0 PEF gapping

Modules: lolace.r90
See also:Pef

1.1.15 Lomiss - Missing data interpolation with a prescribed helix filter

1.1.16 (in local patches)

Lomiss < in.H prec=1 niter=100 filt= [mask=] > interp.H

8 CHAPTER 1. SOFTWARE SUPPORT

Fills missing data by mimimizing the data power after convolution. Works in any number of dimensions!

from history integer n1, n2, n3
from par integer prec=1 use preconditioning for missing data interpo-

lation
integer niter=100 number of iterations
filename filt helix filter
filename mask(optional) selector for known data

from aux (sfilt,
nfilt)

integer dim number of dimensions

integer array w patch size
integer array k number of windows

Modules: lomis2.r90, helix.r90, tent.r90

1.1.17 Lopef - Local Prediction-Error Filter (1-D, 2-D, and 3-D)

Lopef < data.H dim=3 steepdip=0 > pef.H

Local prediction-error filters are estimated with the helix and patching technology. Can also find filters for
steep-dip deconvolution. Currently works in 1, 2, and 3 dimensions.

from history integer n1, n2, n3
real d1, d2, d3 (for

steep-dip decon)
from par integer dim=3 number of dimensions

integer array w=20,20,6 patch size
integer array a=5,2,1 filter size
integer array k (optional) number of windows
integer array gap=0,0,0 filter gap
integer array ctr (optional) filter centering
logical steepdip=0 steep-dip decon PEF
real vel=1.7 velocity for steep-dip decon
real tgap=0.03 time gap for steep-dip decon
filename mask(optional) data selector

Modules: bound.r90, steepdip.r90, shape.r90, lopef.r90, print.r90, helix.r90
See also:Pef , Decon

1.1.18 Losignoi - Local signal and noise separation (N-dimensional)

Losignoi < data.H sfilt= nfilt= eps= > sign.H

Signal and noise separation by inversion (super-deconvolution). Uses the helix and patching technologies.

from history integer array n n1, n2, n3< etc
from par filename sfilt, nfilt helix-type signal and noise local PEF

real eps the magic scaling parameter
integer niter=20 number of iterations

from aux (sfilt,
nfilt)

integer dim number of dimensions

integer array w patch size
integer array k number of windows

Modules: tent.r90, patching.r90, signoi.r90, helix.r90
See also:Decon , Lopef , Helicon

1.1. SERGEY’S MAIN PROGRAM DOCS 9

1.1.19 MSHelicon - Multi-scale Helix convolution (N-dimensional!)

Helicon < in.H filt= ns= jump= adj=0 > out.H

Applies multiscale helix convolution.

from history integer array n readsn1, n2, n3, ...
from par filename filt helix filter file

integer adj=0 apply adjoint (backward) filtering
integer ns number of scales
integer array jump=0 filter scales

from aux (filt) integer array h helix grid (can beh1, h2, ...)
integer array lag=1,...,n1 comma separated list of filter lags
real a0=1 zero-lag filter coefficient

Modules: mshelicon.lop, regrid.r90, mshelix.r90

1.1.20 MSMiss - Multiscale missing data interpolation (N-dimensional)

MSMiss < in.H prec=1 niter=100 filt= [mask=] > interp.H

Fills missing data by mimimizing the data power after convolution.

from history integer array n readsn1, n2, n3, ...
from aux (filt) integer ns number of scales

integer array jump comma separated list of scales, e.g. 1,2,4
from par integer prec=1 use preconditioning for missing data interpo-

lation
integer niter=100 number of iterations
filename filt helix filter
filename mask(optional) selector for known data

Modules: msmis2.r90, mshelix.r90, bound.r90

1.1.21 MSPef - Multi-scale PEF estimation

MSPef < in.H a= center= gap=0 ns= jump= [maskin=] [maskout=] > pef.H

Estimates a multi-scale PEF. Works in N dimensions

from history integer array n readsn1, n2, n3
from par integer array a= PEF size

integer niter=2*prod(a)
(optional)

number of PEF iterations

integer array center PEF centering
integer array gap=0 PEF gapping
integer ns number of scales
integer array jump comma separated list of scales, e.g. 1,2,4
filename maskin, maskout

(optional)
data selectors

Modules: mspef.r90, misinput.r90, mshelix.r90 createmshelixmod.r90, print.r90
See also:MSMiss Pef

10 CHAPTER 1. SOFTWARE SUPPORT

1.1.22 Make - generate simple 2-D synthetics with crossing plane waves

Make n1=100 n2=14 n3=1 n=3 p=3 t1=4 t2=4 > synth.H

Plane waves have fixed slopes, but random amplitudes

from par integer n1=100, n2=14,
n3=1

data size

integer n=3 slope
integer p=3 power for generating random distribution
integer t1=3, t2=3 width of trinalge smoother on the two waves

Modules: triangle.lop, random.f90(for compatibility with Fortran-77)
See also:Hole

1.1.23 Minphase - create minimum-phase filters

Minphase < filt.H niter=20 > minphase.H

Uses Wilson’s factorization. The phase information is lost.

from history integer n1 number of filter coefficients
integer array n2,n3,... number of filters
integer array lag helix filter lags

from par integer niter=20 number of WIlson’s iterations

Modules: wilson.r90, autocorr.r90

1.1.24 Miss - Missing data interpolation with a prescribed helix filter

Miss < in.H prec=1 niter=100 padin=0 padout=0 filt= [mask=] > interp.H

Fills missing data by mimimizing the data power after convolution. Works in any number of dimensions!

from history integer n1, n2, n3
from par integer prec=1 use preconditioning for missing data interpo-

lation
integer niter=100 number of iterations
integer padin=0 pad data beginning
integer padout=0 pad data end
filename filt helix filter
filename mask(optional) selector for known data

Modules: mis2.r90, bound.r90, helix.r90

1.1.25 NHelicon - Non-stationary helix convolution and deconvolution

Helicon < in.H filt= adj=0 div=0 > out.H

Applies helix convolution (polynomial multiplication) or deconvolution (polynomial division). One is the
exact inverse of the other. Watch for helical boundary conditions.

1.1. SERGEY’S MAIN PROGRAM DOCS 11

from history integer array n readsn1, n2, n3, ...
from par filename filt helix filter file

integer adj=0 apply adjoint (backward) filtering
integer div=0 apply inverse recursive filtering (polynomial

division)
from aux (filt) integer array h helix grid (can beh1, h2, ...)

integer array lag=1,...,n1 comma separated list of filter lags
real a0=1 zero-lag filter coefficient

Modules: nhelicon.lop, npolydiv.lop, nhelix.r90, helix.r90, regrid.r90

1.1.26 NPef - Estimate Non-stationary PEF in N dimensions

Pef < data.H a= center=1 gap=0 [maskin=] [maskout=] > pef.H

Estimates PEF by least squares, using helix convolution. Can ignore missing data

from history integer array n readsn1, n2, n3, etc.
from par integer niter=100 number of iterations

real epsilon=0.01 regularization parameter
integer array a= filter size
integer array center=1 zero-lag position (filter centering)
integer array gap=0 filter gap
filename maskin, maskout

(optional)
data selectors

to history integer array lag comma separated list of filter lags

Modules: nhelix.r90, createnhelixmod.r90, nmisinput.r90, npef.r90,
See also:MSPef, Pef , NHelicon

1.1.27 Nozero - Read (x,y,z) data triples, throw out values of z> thresh,
transpose

Nozero < triplets.H thresh=-210 > transp.H

The program is tuned for the Sea of Galilee data set

from history integer n1, n2 n2is the number of triples,n1must equal 3
real thresh=-210 -

threshold (de-
fault is tuned for
Galilee)

to history integer n1, n2 n1 is the number of triples such that z<
thresh

n2=3

See also:Bin2

1.1.28 Parcel - Patching illustration

Parcel < in.H w= k= > out.H

12 CHAPTER 1. SOFTWARE SUPPORT

Transforms data to patches and back without the weighting compenssation.

integer array w window size
integer array k number of windows in different directions

Modules: parcel.lop, cartesian.r90

1.1.29 Pef - Estimate PEF in N dimensions

Pef < data.H a= [center=] [gap=] [maskin=] [maskout=] > pef.H

Estimates PEF by least squares, using helix convolution. Can ignore missing data

from history integer array n readsn1, n2, n3, etc.
from par integer array a= filter size

integer niter=2*prod(a)
(optional)

number of

PEF iterations
integer array center=a/2+1

(optional)
zero-lag position (filter centering)

integer array gap=0 (optional) filter gap
filename maskin, maskout

(optional)
data selectors

to history integer array lag comma separated list of filter lags

Modules: shape.r90, bound.r90, misinput.r90, pef.r90, compress.r90, print.r90, helix.r90
See also:MSPef, Fillmiss , Helicon , Decon

1.1.30 Sigmoid - generate sigmoid reflectivity model

Sigmoid n1=400 n2=100 o1=0 d1=.004 o2=0 d2=.032 > synth.H

Sigmoid reflectivity model in 2-D: complex geological structure.

from par integer n1=400,n2=100 data size
integer large=5*n1 layering size
real o1=0, d1=0.004,

o2=0.,d2=0.032
grid spacing

Modules: random.f90(for compatibility with Fortran-77)
See also:Make

1.1.31 Signoi - Local signal and noise separation (N-dimensional)

Signoi < data.H sfilt= nfilt= epsilon= > sig+noi.H

Signal and noise separation by optimization.

from history integer array n n1, n2, n3< etc
from par filename sfilt, nfilt helix-type signal and noise local PEF

real eps the magic scaling parameter
integer niter=20 number of iterations

Modules: signoi.r90, regrid.r90
See also:Losignoi , Pef

1.2. REFERENCES 13

1.1.32 Tentwt - Tent weight for patching

Tentwt dim=2 n= w= windwt= >wallwt.H

Computes the tent weight for patching.

from par integer dim=2 number of dimensions
integer array n data size (n1, n2, etc)
integer array w window size
integer array k (optional) number of windows in different directions
integer array a (optional) window offset
integer array center(optional) window centering

Modules: tent.r90, wallwt.r90

1.1.33 Vrms2int - convert RMS velocity to interval velocity

Vrms2int < vrms.H weight= vrms= niter= eps= > vint.H

Least-square inversion, preconditioned by integration.

from history integer n1, n2
from par integer niter number of iterations

real eps scaling for preconditioning
filename weight data weight for inversion
filename vrms predicted RMS velocity

Modules: vrms2int.r90

1.1.34 Wilson - Wilson’s factorization for helix filters

Wilson < filt.H niter=20 [n1= lag=] > minphase.H

Reads a helix autocorrelation (positive side of it). Outputs its minimum-phase factor.

from/to history integer n1 filter size
integer array lag comma-separated list of filter lags
real a0=1 zero-lag coefficient

from par integer niter=20 number of Newton’s iterations
integer n1 (optional) number of coefficients
integer array lag (optional) comma-separated list of filter lags

Modules: wilson.lop, helix.r90, compress.r90

1.2 References

Claerbout, J., 1990, Introduction toseplib and SEP utility software:SEP–70, 413–436.

Claerbout, J., 1986, A canonical program library:SEP–50, 281–290.

Cole, S., and Dellinger, J., Vplot: SEP’s plot language: SEP-60, 349–389.

Dellinger, J., 1989, Why does SEP still use Vplot?: SEP–61, 327–335.

14 CHAPTER 1. SOFTWARE SUPPORT

Chapter 2

Entrance examination

1. (10 minutes) Given is a residualr where

r = d0 −m1b1 −m2b2 −m3b3

The data isd0. The fitting functions are the column vectorsb1, b2, andb3, and the model parameters
are the scalarsm1, m2, andm3. Suppose thatm1 andm2 are already known. Derive a formula for
findingm3 that minimizes the residual length (squared)r · r .

2. (10 minutes) Below is a subroutine written in a mysterious dialect of Fortran. Describe ALL the inputs
required for this subroutine to multiply a vector times thetransposeof a matrix.

matrix multiply and its adjoint
#
subroutine matmult(adj, bb, x,nx, y,ny)
integer ix, iy, adj, nx, ny
real bb(ny,nx), x(nx), y(ny)
if(adj == 0)

do iy= 1, ny
y(iy) = 0.

else
do ix= 1, nx

x(ix) = 0.
do ix= 1, nx {
do iy= 1, ny {

if(adj == 0)
y(iy) = y(iy) + bb(iy,ix) * x(ix)

else
x(ix) = x(ix) + bb(iy,ix) * y(iy)

}}
return; end

15

16 CHAPTER 2. ENTRANCE EXAMINATION

Index

C, 1
C++, 1

examination for class entrance, 15

Fortran, 1

index, 17

Java, 1

pitfall, 2

Ratfor, 1
Ratfor90, 1

SEP, 13

17

18 INDEX

